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A three-dimensional parabolic punch problem in linear elasticity
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Abstract. In this paper an analytic solution for a three-dimensional contact problem, in linear elasticity, is
constructed through the separation of Laplace's equation in paraboloidal coordinates. A rigid punch under normal
loading is applied to an isotropic elastic medium occupying an infinite half-space where the contact region is
parabolic and the punch profile is prescribed. This treatment allows for a general punch profile provided it is
physically reasonable so as to ensure the convergence of the solution.

1. Introduction

In the theory of elasticity, a punch problem arises when a rigid frictionless punch is pressed
against an elastic medium occupying the infinite half-space z - 0. Let S denote the region of
contact between the base of the punch and the surface z = 0, and S the region outside S on
z = 0. Then, as explained in [4] and [8] (Ch. 1), from the equations of elastostatics for a
linearly elastic, homogeneous and isotropic medium (with zero shearing stress on z = 0), the
problem of determining stresses and displacements in the material is reduced to that of
determining a function ql(x, y, z), harmonic in z >0, satisfying appropriate boundary
conditions; in effect,

(i) Iljz=o is a prescribed function of x, y on S,

(ii) = 0 on S.

Then the two quantities of greatest physical interest, namely the normal component of stress,
z,,(x, y, 0), immediately under the punch, and the normal component of displacement,

w(x, y, 0), of the surface outside the punch, are given in terms of qI by

1-v
w(x, y, O)= q(x, y,O) on S,

,,(X, Y, 0= on S.dZ IzO

Here, /z, v denote the shear modulus and Poisson's ratio.
In this paper we shall assume that there is complete contact between the base of the punch

and the surface of the elastic medium and that z(x, y, 0) = 0 on S. In complete contact
problems Tz,(x, y, 0)< 0 for all (x, y) in S. For a more detailed discussion the reader is
referred to [4] (Sec. 1).

The solution of the problem for a circular punch (of arbitrary punch profile) has long been
known. For an elliptic punch, the solution was given by Shail [14] using a classical approach
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of transforming to ellipsoidal coordinates, in which the mixed boundary-value problem
becomes separable and the solution appears in terms of Lam6 polynomials.

In [4] the authors treated the problem of an inifite strip punch, on similar lines, using
elliptic cylinder coordinates; the solution involves Mathieu functions. The analysis is,
naturally, greatly complicated by the fact that the punch extends (theoretically) over an
infinite region.

In the present paper the same technique is applied to a parabolic punch, using paraboloi-
dal coordinates. Again, Mathieu functions are used in the solution, with an additional
complication which is investigated in Section 4. In the strip punch problem, the general
solution involves the product of a trigonometric function and two Mathieu functions [4] (Eq.
(3.7)), whereas here we have the product of three Mathieu functions: consequently instead
of using a Fourier cosine transform we have to employ a less familiar integral relationship for
Mathieu functions.

It may be noted here that crack and punch problems for the same regions can usually be
solved along similar lines. This is due to the fact that if such problems are viewed as mixed
boundary-value problems of potential theory then by switching the appropriate boundary
conditions of one problem we can define the other. In the punch problem we have a state of

zero normal stress outside the punch as well as a prescribed function for the normal
component of displacement under the punch, whereas in the corresponding crack problem
the normal component of displacement outside the crack is zero and the normal component
of stress (pressure) is prescribed inside. A solution to the two-dimensional parabolic contact
problem is given by England [6], and the parabolic crack problem for uniform pressure has

been solved by Shah and Kobayashi [13]. Also in a paper by Kassir [10], solutions for
parabolic crack problems under uniform pressure, uniform shear and pure bending are
given.

It is worth remarking that the problem for an indentation of uniform depth, the parallel to
the uniform-pressure crack problem considered by Shah and Kobayashi, is not physically
reasonable because it would require an infinite production of energy. It is not surprising,
therefore, that our method of solution does not apply to this case although, of course, an
approximation to this situation could be handled.

Our solution to the parabolic punch problem allows a general representation for normal
displacements under the punch (within physically reasonable limits) which in terms of the
corresponding crack problem amounts to allowing a general pressure distribution inside the
crack.

It should be emphasized that the solution we give is not merely theoretical; recent progress
in the numerical computation of Mathieu functions brings the solution well within the area
where numerical results can be obtained for specific cases. Section 6 of this paper illustrates
the solution in one such case.

2. Formulation of the general boundary-value problem

In terms of the Cartesian coordinates (x, y, z) let the contact region S be the interior of a
parabolic plate in the xy-plane and let S denote the region outside S on z = 0 which we
assume to be stress-free.

The parabola describing the boundary of S has its vertex at ( c, 0, 0) and its axis coincides
with the x-axis such that all points with coordinates (x, 0, 0) where x < ½c lie inside S. More
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specifically, in terms of the paraboloidal coordinates (a, , y) (discussed below), the region
S is the degenerate surface corresponding to a = 0.

A rigid frictionless punch whose profile is defined by the function K(x, y) is applied to the
region S and contact is assumed to be complete everywhere on S. This assumption is highly
significant in application of the theory to practical problems. The mathematical analysis
which follows can be carried out without any assumption regarding completeness of contact
and apparently sensible answers can be obtained; at the end, however, one has to check that
the theoretical pressure p between the punch and the surface is everywhere non-negative,
and that check must be done in each individual problem. In problems where the contact area
is only known qualitatively, it is necessary to follow an iterative procedure - see, for
example, Kalker and Van Randen [9]. We shall also assume that K(x, y) is symmetric about
y = 0. A general profile can be written as the sum of two functions, one symmetric and the
other antisymmetric about y = 0 and the corresponding solutions can then be superposed.
For zero shearing stress on z = 0, the general equations of elasticity [4] (Sec. 1) can be used
to reduce this problem to a mixed boundary-value problem of potential theory with the
following boundary conditions:

w(x, y, O)= K(x, y) on S, Tz,(x, y, O)= O on S .

Thus, a solution to the boundary-value problem may be regarded as the harmonic function ¢r
which satisfies the following conditions:

(a) V2 = 0 for z > 0,
(b) O---> 0 as R-c, (R = (X2 + 2 + 

2 )1/ 2 ), in z >0,

(c) = on S,

(d) {(1 - v)// )}i(x, y, 0) = K(x, y) on S,
(e) K(x, y) is symmetric about y = 0.

In order to solve this problem by the method of separation of variables we shall employ
the paraboloidal coordinate system. The paraboloidal coordinates (a, /, y) are related to
the Cartesian coordinates by

x= 4c(cosh 2a + cos 2 -cosh 2y), y = 2c cosh a cos 3 sinh ,

z = 2c sinh a sin /3 cosh y,

where a, /3 and y are all real, c is a dimensional parameter and

0 -a<oo, -r < ,B , r, 0 0 y< .

Since this coordinate system is not well known, a brief description follows.
The surfaces a = constant consist of a family of elliptic paraboloids. In particular, if a = aO

the vertex of the elliptic paraboloid is given by ( c cosh2a, 0,0) (in the Cartesian
coordinate system) and its axis is the x-axis so that a point with coordinates (x, 0, 0) where
x < 2c cosh 2ao lies inside the elliptic paraboloid. The section of this paraboloid by a plane
perpendicular to the x-axis is an ellipse, the sections by the planes y = 0 and z = 0 are both
parabolas.
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On such a surface a = a0 there is a singular arc, namely the intersection with the surface
y = 0; on this singular arc the correspondence between (x, y, z) and (a, , y) coordinates
ceases to be one-to-one. If 0 < /3' < r/2, the points with paraboloidal coordinates (a0, ir +
/3', 0) coincide, also the pair (a 0, - it -+ /3', 0) represent the same point. As shown in [1] this
has important consequences if we require a solution of V2qi = 0 to have continuous gradient
across the arc.

For a = 0 we obtain the degenerate surface occupied by a parabolic plate in the x, y-plane
with vertex at (c, 0, 0). The surfaces y = constant also consist of a family of elliptic
paraboloids. For y = y0 we have the elliptic paraboloid with vertex at (- c cosh 2 y0, 0, 0)
whose axis is the x-axis, and points with Cartesian coordinates (x, y, z) where x3
- c cosh 2y, lie inside this paraboloid. The sections are similar to those of a = a0. On such a
surface y = y0, the intersection with a = 0 forms another singular arc, where the points with
paraboloidal coordinates (0, ± /3', y0), for 0< /3' < 7r/2, coincide. This also has implications
for continuity of solutions and continuity of the gradients of solutions across the arc.

When y = 0 we obtain the parabolic plate in the x, z-plane with vertex at (- 2c, 0, 0).
Finally, the surfaces /3 = constant consist of portions of hyperbolic paraboloids. / = /30 gives
one quarter of a hyperbolic paraboloid, and the complete paraboloid is given by /3 = +/30,
/3 = -+(i - /30). The degenerate surfaces are /3 = 0, + r/2 and r. For our purposes, the
region formed by /3 = 0 and /3 = r is of interest since it is the infinite plate with a parabolic
hole in the x, y-plane which occupies the exterior of the surface a = 0 in this plane.

3. Separation of Laplace's equation in paraboloidal coordinates

Laplace's equation V2rq = 0, in paraboloidal coordinates is given by [2]

(cos 2/ + cosh 2y) - + (cosh 2y + cosh 2a) / + (cosh 2a - cos 2/3) -- =0, (3.1)
da 2 dy

Let ¢I = A(a)B(/3)C(y). Then the separated equations are:

A"(a) + (- A + 2q cosh 2a)A(a) = 0, (3.2)

B"(P) + (A - 2q cos 2/3)B(/3) = 0, (3.3)

C"(y) + (-A - 2q cosh 2y)C(y) = O , (3.4)

where A and 2q are separation constants chosen so that (3.3) takes the standard form of
Mathieu's equation. Initially A and q are arbitrary and independent but, as we shall see later,
the boundary conditions of our problem will require that q be negative, say q = -h 2, where
h E [0, c). The separation constant A = A(h2) turns out to be one of the characteristic values
an, b of Mathieu's equation [4] (Sec. 3).

Arscott [1] called solutions of (3.4) 'co-Mathieu functions'. These solutions can be
expressed conveniently in terms of solutions of (3.2), namely the 'modified' Mathieu
functions.

With the solutions of equations (3.2)-(3.4) in mind, we quote various needed results from
Mathieu-function theory.
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Consider the ordinary and modified Mathieu equations, respectively

d2

d 2W +(A -2q cos 2z)w = 0, (3.5)
dz2

d2W
dz2 ( A-2q cosh 2z)w = , (3.6)

(3.6) being obtained from (3.5) by changing z to iz.
Equation (3.5) has the same qualitative nature whether q is positive or negative. Indeed, it

is easily seen that if w(z, q) is a solution of (3.5), then w( 7r - z, -q) is also a solution. This
remark leads to the well known relations between 2ir-periodic Mathieu functions of the first
kind, where using McLachlan's notation [12] (Sec. 2.18) we have

Ce2n( - z, q) = (-1) ce 2 (z, -q), (3.7a)

ce2n+( - z, q) = (-1) se 2n+l(z, -q) , (3.7b)

Se2n+l - Z, q) = ( 1 )
n ce 2n+(z, -q), (3.7c)

se2n+2 - z, q = (-1)n se 2n+2(z, -q). (3.7d)

In the problem under consideration, we are interested only in these 27r-periodic Mathieu
functions of the first kind. The parameter A must, of course, have the appropriate
characteristic value am(q) or bm(q).

In equation (3.6), on the other hand, a change of sign of q changes the qualitative nature
of the equation completely. If q > 0, say q = h2, then (at least for sufficiently large z) the
coefficient of w is negative, so the equation is oscillatory. The two standard solutions are the
modified Mathieu functions of the first and second kind. To be specific, let us take the case
where A = a2n(h 2 ), so that the periodic solution of (3.5) is ce 2n(z, h2 ); the solutions of (3.6)
are then respectively

Ce2n(z, h2 ) = ce2n(iz, h2 ) and Fey2n(z, h2 ).

As z -* these are both oscillatory and tend to zero, their asymptotic behavior being, as
z- -x, [12] (Sec. 11.10)

Ce2n(z, h) p 2 n(h )(-) sin(v +)

Fey2 n(z, h) -- P2n(h )( 3 v) cos(v+ 

where v = hez and p2 n(h 2 ) = ce2n(0, h2) ce2n( T'r, h2 ) A(2 n)(h 2 ).
On the other hand, if q is negative, then equation (3.6) is non-oscillatory [5] (Appendix A)

and the solutions are exponentially increasing or decreasing. The standard solutions are the
modified Mathieu functions of the first and third kind, namely

Ce2n(z, -h 2 ) = ce2n(iz, -h 2 ) and Fek2n(z,-h 2 )
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with asymptotic behavior (for large z) [12] (Sec. 11.12)

Ce2n(, -h 2 ) ~ (-l)np2n(h2)(2Tv) - 1/2 eu

and

Fek2n(, -h 2 ) - (-1)np2(h2)(21rv) - 1/ 2 e - v

where v = h e.
Next we consider the 'co-Mathieu equation' (3.4) in the form

d2w
d-W + (-A - 2q cosh 2z)w = . (3.8)
dzT

It is easily verified that if w(z, q) satisfies (3.5), then w( l 7T + iz, q) satisfies (3.8). Following
Arscott's notation [1] we write those solutions corresponding to ce2 n(z, q) as

CE2 n(Z, q) d ce2 n( 2ir + iz, q) = Ce2 n (Z - lir, q),

FEY 2n(z, q) Fey2n(z - i7T, q),

FEK2n(z, q) Fek2n(Z - ir7T, q).

The qualitative nature of this equation depends also on the sign of q, but in the opposite way
to that of equation (3.6). For q >0, (3.8) is non-oscillatory, with CE and FEK the real
solutions, CE being exponentially increasing and FEK decaying. As z- ,

CE2n(z, h2 ) -p2n(h2 )(2rv)1 /2 ev

and

FEK2n(z, h2 ) - P2n(h2 )(2rv)1 1 2 e -

For q < 0, the real solutions are CE, FEY, both oscillatory and decaying. We shall not need
these in the problem under discussion.

Finally, we observe that formulae (3.7) yield simple links between the modified Mathieu
and the co-Mathieu functions. Writing ( r + iz) for z in (3.7a) gives

Ce2n(z, q) = (-1) n CE2n(z, -q) . (3.9)

Consequently, it is possible to avoid use of the CE functions altogether. We shall retain them
while putting our problem into mathematical terms but then eliminate them in favor of the
Ce functions in order to analyze the solution.

4. The general solution of the boundary-value problem

In terms of the paraboloidal coordinates (a, 3, y) we wish to find 4i = /(a, 3, y) such that it
satisfies the following set of conditions:
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(a') Equation (3.1) holds for a E (0, o, /3 E (0, r) and y E (0, 0),

(b') -0O as a o or --> 0, for E [0, ir],

(c') (2c sinh a cosh y)-1 - = 0 at = 0 and = r, where a E (0, o0) and i E [0, o),
df

(d') (0, , ) = H(/3, y), where

H(/, y) {/1(1- v)}K(x, y), / E (O, r) and y E [0,o),

(e') H(/, y) is symmetric about /3 = Tr/2 .

Equation (3.3) together with the above conditions ((c') and (e')) imply that B(,8)=
ce2n,(/, q) ([4], Sec. 3) and of course that A = a2n(q), but with no restriction on the sign of
q.

We turn to the question of what solution of (3.4) must be chosen. Consider the part of a
surface a = a0-( O) which lies inside the elastic medium. This surface is described as and
y vary over the ranges 0 /< - Ir and 0 y < 0 with one-to-one correspondence except on
the singular arc given by y = 0. Here the points corresponding to the triads (a0 , Tr + /3', 0),
for 0 < /' < ½ rT, coincide. Now, we naturally require that our ultimate solution d should be
continuous, with continuous gradient, throughout the interior of the elastic medium. As
explained in [1], these continuity requirements lead to the conclusion that if =
A(a)B(/3)C(y) and B(/3) = ce2n(/, q) then we must have C(y) = CE2n(y, q); the solutions
FEY2n (y, q) and FEK2,(y, q) are ruled out.

We still have no criterion for the sign of q, but this appears when we take account of
condition (b'), for as noted above, CE2n(y, q)--> as y- only if q <0. We therefore set

q = _h 2

and our separated solution is of the form

, = A(a) ce2n(/, -h 2 ) CE 2n(, -h 2 ) .

Finally, consider A(a) which satisfies (3.2) with q =-h 2. Hence, A(a) may involve
Ce2n(a, -h 2 ) or Fek 2n(a, -h 2 ), but the former must be excluded because of condition (b');
as a--> 00, Ce 2n(a, -h 2 ) -- 0 .

So A(a) = Fek2n(a, -h 2 ) and our separated solution is necessarily of the form

4i = Fek2n,(a, -h 2 ) ce2 n(, -h 2 ) CE2 n(Y, -h 2 ) .

More generally, a single separated solution can be written as

n = nt/n(a, , y, h) = B,(h) Fek 2 n(a, -h 2 ) ce2 n(/3, -h 2 ) Ce2n(y, h2 )

where CE2n (y, -h 2 ) has for convenience been replaced by Ce2n(y, h2 ) and, as in [4] (Sec.
3), n is an arbitrary non-negative integer, h is an arbitrary non-negative parameter and Bn(h)
an arbitrary constant. Consequently, a general solution for the mixed boundary-value
problem can be written in the form

i = f E Bn(h) Fek 2 (a, -h 2 ) ce2 n(/, -h 2 ) Ce2 n(y, h2 ) dh. (4.1)
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In the rest of this section, while finding the coefficients Bn(h), we proceed formally;
validity is discussed in Section 5.

From boundary condition (d'),

H(13, ) = C(h) ce2,n(, -h 2) Ce2,n(, h2) dh (4.2)

where C,(h) = Bn(h) Fek2n(0, -h 2).
Since ce2 n(,f, -h 2 ) = (-1)n Ce2n(r - /3, h2 ),

H(P, ) )= ( (- )nC n(h) cen( -
2 y,h2) Cn(, h2) dh (4.3)

n=O

We now have to invert this relationship in order to obtain Cn(h) in terms of H(13, y). Our
method involves the use of an integral relationship due to McLachlan [12] (Sec. 10.51, (9))
which in turn is derived from Whittaker's general solution of Laplace's equation; this
converts (4.3) into a double Fourier cosine transform.

From [12] (Sec. 10.51, (9)),

ce2n( 2-13B, h2) Ce2n,(y, h 2) = P2n f cos[F(/3, y, 0, h)] ce2n(0, h2) dO

where F(/3, y, 0, h) = 2h(cosh y sin /3 cos 0 + sinh y cos /3 sin 0), and

P2n = ce2n(0, h2 ) ce 2n( 7r, h2 )/ 2 7rAo2n )(h2 ) .

So we can write

/2

ce2n( -B, 3, h2 ) Ce 2 n(y, h2 ) = 42 n fo cos(2h cosh y sin cos 0)

x cos(2h sinh y cos P sin 0) ce 2,,(, h2) dO (4.4)

and

H(13, y) = D(h) cos(2h cosh y sin 3 cos 0)

x cos(2h sinh y cos 3 sin 0) ce2n,(, h2) dO dh (4.5)

where D,(h) = (- 1)4p2nCn(h). We interchange the order of summation and integration
inside (4.5), then

foil 2

H(/3, y) = cos(2h cosh y sin p cos 0)

x cos(2h sinh y cos 3 sin O)f(O, h) dO dh (4.6)

where

f(O, h) = Y D,(h) ce2n(, h2). (4.7)
n=O
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Next, we make the following transformations:

5 = h cos0, 2 = h sin , x = 2 cosh y sin and x 2 = 2 sinh y cos13 ,

where E [0, rT], h E [0, ), y E [0, ), 3 E [0, IT], so 1E [0, ), 2 E [0, ), XI E [0, o)
and x2 E (-0, x). Then (4.6) becomes

H(x 1, X2 ) = fo fO COs(Xll) CoS(X2 ' 2 )g(' 1 2) df 1 d 2 (4.8)

where Hl(x1 , x2 ) = H(/3, y) and g(, 2) f( O, h)lh. [From (4.7) and the subsequent
expression (4.11) for D,(h) it can be shown that f(O, h)lh is bounded as h- 0.]

Using the two-dimensional Fourier cosine transform formula on (4.8) we get

g( 1, 2) = 42 f Jo COS(Xl) Cos(x 2 62 )Hl(xl, X2) dx dX2

Changing back to variables h and 0,

2 4h f OD
D,,(h) Ce2n(0, h2 ) = - cos(xlh COS 0) cos(x 2h sin O)Hl(xl, x2) dx1 dx2 . (4.9)

n=O i

Next we multiply both sides of (4.9) by ce2m(0, h2), where m is a fixed non-negative
integer, and integrate with respect to 0 from 0 to ½ r. Reversing the order of summation and
integration and using the orthogonality of ce2n(0, h2) we obtain

7r Dm /h2 4h 2)
Dm(h) = 2ce2(, h2) o 0 cos(xlh cs 0) cos(x2h sin 0)
44f fT o

x Hl(xl, x2) dx1 dx2 dO . (4.10)

Since dx1 dx2 = 2(cosh 2y + cos 2,3) d3 dy, then in terms of 13 and y, (4.10) can be written as

Dm(h) = 32h Ce2m(0, h 2)f 2 H(/3, 7) cos(2h cosh y sin 3 cos 0)

x cos(2h sinh y cos 3 sin 0)(cosh 2y + cos 2P) dp d .

Finally, interchanging orders of integration and using (4.4), we get

8h ,/2 ( 2
Dm(h) = Pr32m 0 (cosh2y + cos 2,3) ce2m( 2 -3, h2)

x Ce2m(y, h2)H(3, y) d3 dy. (4.11)

Hence

2h ff/2 2
Cn(h) = t2 J (cosh 2y + cos 213) ce 2 (1, -h 2) Ce2n(y, h2 )H(3, y) d,3 dy

(4.12)

and the inversion of the relationship (4.3) is complete.
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It may be noted here that from (4.1) the normal component of stress under the punch,
i.e., on S, is given by dql/dzz=o, namely

(2c sin cosh y) f B(h) Fek n(, -h) e 2 2n(y, -h 2 ) Ce2n (, h2 ) dh (4.13)

where /3 E (0, 7r) and y E [0, ).
Concerning the edge of the contact region, i.e., where a = 0 and = 0 or 7r, the presence

of the term (2c sin 3 cosh y)-' in (4.13) indicates a square-root type singularity of the
function representing the normal component of stress. If (0, /3, y) are the paraboloidal
coordinates of a point inside S and d represents the (shortest) distance from this point to the
boundary of S, then

d2 = 4c2(1 - cos P)2 sinh2 y + - (1 - cos 2/)2

and

V- 2c sin G cosh yf(y) as -*O

where f(y) = (ccosh y) - /2. We observe that this type of singularity is expected in
complete contact problems [8].

5. On the validity of the formal solution

For a given profile function H( ,, y) one can examine the corresponding relationships
derived in the previous section and determine whether the formal steps are justified or not.
It is also possible to specify a set of sufficient conditions to be imposed on the function
H( 3, y) in order to justify the results obtained in Section 4. For the case of the strip-punch
problem a detailed discussion is provided in [4] (Sec. 4). Here, however, we shall only
outline the main steps of a similar analysis while noting that for the parabolic punch
problem, one expects the conditions on H to be somewhat stricter than those stated in [4] for
the strip punch. The parabolic punch not only extends to infinity along the x-axis but is also
opening out to an infinite width.

To justify the expression (4.3), let

T( 1, 2) = f j cos(x1ll) COS(X2 2)H1(X1l, 2 ) dx dx2 (5.1)

where 1, 2, Xl, x2 and Hl(x1, x 2 ) are as defined in Section 4. Some conditions on Hl(xl, x 2 )

will be required here to ensure the existence of T(~ , 2). Next let 1 = h cos 0, ,2 = h sin 0
and

d. 1
T( 61, 2)- =J(h, 0).

If we expand J(h, 0) as a Mathieu function series, under similar conditions to those given in
[4] (Sec. 4), we obtain

J(h, ) = En(h) ce 2 (0, h2)
n=O
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where, provided the series is uniformly convergent,

En(h) = - J(h, 0) ce2 n(, h2 ) d .

Now we choose the coefficients Cn(h) in (4.3) such that

(-1)En(h)
Cn (h) 2

IT P2n

where P2n is defined in Section 4.
It may be noted here that since

ce2n(o, h2) = ce2n(22, h) = 0

and the zeros of basically periodic solutions of Mathieu's equation are all simple, then

ce2n(0, h2 ) 0 and e2n(2Tr, h2 ) 0, i.e., P2n, O.

Finally inverting the double Fourier cosine transform (5.1) we obtain

H l(xl, x2) = 42 o fo cos(xlfl) cos(x2 2)T(l, 2) d d 2

and by changing the variables back to h, 0, and y, we get (4.3). Some further conditions
must be imposed on H1 to ensure that the double Fourier transform can be inverted. For
example we can require Hi to be three times continuously differentiable with respect to x1

and x2.
In order to show that the function ¢i represented by (4.1) is the solution of the

boundary-value problem it must be shown that ii is continuous and satisfies Laplace's
equation together with the boundary conditions. Writing ¢f in the form

I/( /3, Y)=fo ( 1 E n-(h) Fek2 n(a, -h2) ce2 n(-h 2)Ce2n(y, h2) (5.2)

n=O 0 Fek2n(O, -h 2 ) P2n

we observe that, from [5] (Appendix B),

Fek 2n(a, -h2 ) 

Fek2n(0,-h2 ) 1'

and from (4.4) and [5] (Appendix C (c. 1.9)),

ce 2n(,/, -h 2 ) Ce 2n(y, h2 ) 2 +r(y0 + y1h + 2h
2)

P2n

where y0, ,, and 2 are constants.
Moreover, by the same technique as that used in [5] (Appendix D), a suitable bound can

be found for En(h) to ensure the uniform convergence of the series and the integral in (5.2).
The rest of the analysis, required to demonstrate that i is twice differentiable with respect to
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the three variables, can be developed by modifying the techniques used in [5] (Appendices
B, C, and D).

6. An example

We shall now consider an example where the function representing the punch profile, in

paraboloidal coordinates, is given by

H(,p, 8) = 8[1 + (c2 /4)(cos 2/3 -cosh 26 )2
] -1 (6.1)

with 8 and c as dimensional parameters. The contact region on the x, y-plane is bounded by

the parabola y2 = 2c2 - 4cx whose vertex in Cartesian coordinates is at (c12, 0, 0), and is

equal to the maximum depth of the punch on the positive z-axis.
This example has been chosen because it has a mathematical form which makes the

complete analytical solution possible. Nevertheless it is a physically realistic profile since its

longitudinal cross-section which is represented by

z = [l+(x -c/2)2 ]-1

shows the necessary approach to zero of the punch depth.
The coefficient Bn(h), in the general solution (4.1), can be written as

Bn(h) = C(h)/Fek2 n(0, -h 2 )

where Cn(h) is given by (4.12). In order to evaluate the normal component of stress, Tzz,

under the punch, Cn(h) together with the various Mathieu functions involved must be
calculated. The following analysis demonstrates how C(h) can be simplified to a point
where its numerical evaluation becomes an easy task. We also note that the expression for

Z((0, , y) is

(2c sin 3 cosh y)-J f Cn(h)V,(h) ce2 n(, -h 2) Ce2 (y, h2) dh (6.2)

where V,(h) = Fekn (0, -h 2 )/Fek2 ,(0, -h 2 ).
Starting with (4.10) where D,(h) = (-1)4p2,,Cn(h) and H(x, x 2) =6[1 + (c2/4)(x2 +

x2)2/J4]-, we can write Cn(h) as

((-1)n48hlp2n r3) j ce2n(O, h2 ) f f cos(xlh cos 0) cos(x2 h sin 0)

x [1 + (c2/4)(x2 + x2) 2/4]-l dx 1 dx2 dO . (6.3)

Next let t = h cos 0 in (6.3) and use a Fourier cosine transform inversion [7] to obtain

C (h) = ((-1) 88hi/p2 ,T2c) f -ce2 (O, h2 ) t cos(x2 h sin 0)

X [(X2 + 4iC)-/2 e t(x2+4ic)l/2 _ (x2 _ 4iC)-1 1/ 2 e-t(x2-4i/c)1/ 2 ] dX2 dO 
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The above expression can be inverted one more time, by replacing h sin 0 by s and noting
that s2 + t2 = h2. Then

Cn(h) = ((-l)86hi/p2n7r2 c) ce2 n(0, h2 )K(h, c) dO

where

K(h, c) = [Ko((1 + i)h(21c) /2 ) - Ko((1 - i)h(21c)/1 2 )]

and K0 is the modified K-Bessel function of order zero.
Finally, since the Mathieu function ce2n(0, h2) can be represented by a Fourier series

expansion, namely

ce2n(O, h2)= E A2")(h2 ) cos 2r ,
r=O

(6.4)
C,(h) = ((- 1)"48hiA(o2n(h 2) lp2 n rc) K(h, c) .

Now given 3, y, and c, the normal component of stress can be calculated by a method
similar to that used in [4]. For instance if c = , p3 = ½ 7r and y = 0, after some simplifications,

,,z(0, r/2, 0) = 168i f h(Ao2 ))2(h)Yn(h)K(h 1/2) dh (6.5)
n=O

where yn(h) = ce2 n(0, h2 )/ce2n('r/2, h2 ).
Using small values of h, say h = 0(0.1)2.0, and n = 0, 1, 2, as in [4] (Sec. 5), Tz can be

evaluated fairly accurately. This is due to the occurrence of the coefficient A 2n) and the
function K(h, 1/2) in (6.5).

Values of Ao2n)(h 2) may be obtained from Table la ([4]), V(h) are tabulated in Table 2
([4]) and yn(h) are given in Table 1 of the Appendix. The latter were computed using the
method outlined in [3]. In addition, Table 1 of the Appendix contains values of K(h, 1/2)
which were obtained from the application of the Romberg procedure with Macsyma ([11]) to
an integral representation of the modified K-Bessel functions, namely

iK(h, c) = 2 e-h(2/c)
1

/2 cosh 0 sin(h(2/c)112 cosh 0) dO .

This method has led to the following approximation of Tz,

'rz.(0, r/2, 0) (-1.44189) .

Also considering the point at the boundary of the punch which coincides with the vertex of
the parabola (a = P = y = 0) and excluding the factor /sin 3 in (6.2) we obtain the
approximation

| >C_ Cn(h)V(h) ce2n(0, -h 2) Ce2,(0, h 2) dh- 8(-1.92272).
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This result is in accordance with the expected square-root type singularity of the normal
component stress in complete contact problems.

7. Parabolic crack problems

Parabolic crack problems which involve nonuniform pressure distributions can be treated by
the methods employed in this paper. However, as indicated in [4] (Sec. 6), the boundary
conditions will be reversed in the sense that here the pressure, p(x, y), is precribed on S and
the normal component of displacement is zero on S.

Appendix

Table 1. iyh) ce 2(2, h2) K(h, c) = Ko((1 + i)h(2/c)1 12 ) - Ko((1 - i)h(21c)1"2)Ce2,(/2 ' h2) ,

h

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

yo(h)

1.000000
0.990037
0.960789
0.917613
0.852414
0.779459
0.699434
0.616466
0.534469
0.456652
0.385434
0.322113
0.267169
0.220388
0.181086
0.148421
0.121442
0.099282
0.081114
0.066258
0.054128

y,(h)

-1.000000
-1.005013
-1.013421
-1.030360
-1.053046
-1.086020
-1.124616
-1.170027
-1.221070
-1.275737
-1.322370
-1.384196
-1.430558
-1.466529
-1.488435
-1.493723
-1.480541
-1.448273
-1.397352
-1.329448
-1.237090

Y2(h) K(h, 1/2)

1.000000
1.000660
1.002613
1.006008
1.010727
1.016819
1.024522
1.033283
1.043761
1.055812
1.069548
1.085111
1.102620
1.122281
1.144303
1.168953
1.196521
1.227318
1.261630
1.299718
1.341702

1.570796
1.475598
1.298651
1.097885
0.898734
0.714555
0.552024
0.413698
0.299572
0.208084
0.136813
0.082941
0.043578
0.015964

-0.002405
-0.013718
-0.019820
-0.022225
-0.022136
-0.020483
-0.017959
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